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Abstract--A numerical study is made of the melting of ice heated from below in a cavity filled with a 
porous medium, using the time-dependent form of the governing equations. The natural convection in the 
liquid phase, the conduction in the subcooled ice region, and the effect of density inversion of water are 
incorporated into the numerical simulation. The primary characteristics of the melting process, i.e. the 
onset of convection, the flow pattern in the melt, the heat transfer rate, and the interface position. are 
studied in terms of the Rayleigh number, the Stefan number, the aspect ratio of the cavity, and the density 
inversion of water. Principal findings indicate that the initial cellular pattern formed just after the onset of 
convection passes through several intermediate forms in its transition to a final steady state. Each change 
in the convection pattern is accompanied by a sudden increase in the heat transfer rate and in the 
displacement velocity of the solid-liquid interface. A local maximum in the heat transfer rate is exhibited 

shortly after the establishment of the new convection pattern. 

INTRODUCTION 

HEAT TRANSFER with a solid-liquid phase change is 
of current interest in both fundamental and applied 
research. Some naturally occurring examples are in 
the freezing and subsequent breakup of ice in lakes 
and rivers as well as in the melting of the upper per- 

mafrost in the Arctic due to a buried pipeline. To this 
may be added several other problems relevant to the 
areas of soil and groundwater physics. Numerous 
technical applications, for example, in thermal energy 
storage, the design of buried heat exchangers for heat 
pump applications, and in the food processing indus- 
try also exist. The simplest physical description of the 
phenomenon is of an initially solid mass that, under 
the influence of external heat sources, undergoes a 
phase change and forms a layer of liquid melt that 
coexists with the remaining solid phase. Subsequent 
evolution of the twe phases will essentially depend on 
the behaviour of the net heat transfer to the system. 

In early work, convection in the melt was neglected, 
and some analytical solutions were obtained such as 
the classic Stefan solution. However, it has been found 
that the conduction in the liquid is the dominant mode 
of heat transfer only in the early stages of melting. 
Subsequently, the liquid motion keeps increasing in 
strength, and can significantly influence the heat trans- 
fer and the position of the interface [ 1,2]. The presence 
of the convective activity complicates analytical stud- 
ies due to the fact that the interface movement is 

an unknown transient factor. Most of the available 
literature concentrates mainly on cylinders and cavi- 
ties with side heating [3-121. Recent literature reviews 
may be found in the articles of Viskanta [13, 141. 

In this paper, a study has been made of the melting 
of ice heated from below in a cavity filled with a 
porous medium, a subject which has received rela- 

tively little attention. It is well known that convection 
sets in only when the effective Rayleigh number 
exceeds some critical value, and is generally of cellular 

form. As the melting proceeds, the flow pattern may 
persist for a period of time but the cells tend to become 
narrower and narrower and approach a ‘transition’ 
point, where regular cells break down, become irregu- 
lar, and are finally transformed into some new regular 
flow pattern. The convection form, heat transfer rate 
and the movement of the ice-water interface during 
the transient phase are of primary interest. In this 
study, the natural convection incorporating the den- 
sity inversion of water as well as the conduction in 
the ice region have been considered. Non-orthogonal 

coordinate transformations have been employed to 
map the two irregular time-dependent domains into 
rectangular regions while a finite difference method 
has been used to obtain the numerical results. 

GOVERNING EQUATIONS 

The physical system considered here is the melting 
of ice in a rectangular cavity containing a porous 
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NOMENCLATURE 

N wave number r,I temperature at the upper surface 
c;, heat capacity AT’ temperature difference across the melt 

!/ gravitational acccieration layer, 7, - 7, 

9ri covariant metric tensor AT temperature difference across the ice 

Y” contravariant metric tensor layer, Tr- 7, 
A& latent heat of fusion 11’ contravariant velocity component 
H height of the cavity x t , x z dimensionless Cartesian coordinates, 
J Jacobi determinant of the coordinate .v’*lH, .r’*/H 

transformation XL / aspect ratio, L./H. 
k conductivity 
K permeability 
L length of the cavity Greek symbols 
Nub average Nusselt number at the bottom 

;; 

diffusivity 
surface (7”, - Trfi(7, - 7,.) 

Nu” average Nusselt number at the upper 
, 

q’, q- transformed coordinates in the ice 
surface region 

(I constant in the water density expression, i constant in the water density expression, 
1.8948 16 9.297173x IO-” c-y 

R diffusivity ratio, Y”$ V kinematic viscosity 
RU Rayleigh number, I~~(AT’)‘KH/vx’ <‘, 5’ transformed coordinates in the water 
Ra’ Rayleigh number based on the region 

potentially unstable layer thickness, P density 
Ru S( I - /I) z +q & maximum density, 999.972 kg m ’ 

s dimensionless interface position, S*/H T dimensionless time, t 
stc’ Stefan number of the liquid phase, d, porosity 

C;,A P’/qiAh, CD either T, S or c/> 
Ste’ Stefan number of the solid phase, 43 dimensionless stream function, p*jz’. 

Cj,AF/$Alrf-(k”/k’) 
t dimensionless time, t*/cr’H’ 
T’ dimensionless tenlperature in the water Superscripts 

layer, (T’* - F)jAT’ 1 quantity in the water region 
7 dimensionless temperature in the ice S quantity in the ice region 

layer, (7; - T‘*)/ALIT * dimensional variables. 

7,X temperature at the bottom surface 

r, fusion temperature Subscripts 

7, maximum density temperature. c critical value at the onset of convection 
4.029325 C m maximum density point. 

medium. The vertical walls are insulated, the upper 
and lower surfaces are kept at constant temperatures 
7, and 7, respectively at times less than zero. As t 2 0. 
their temperatures are changed to 7, and Th, with T, 
and 7, respectively smaller and larger than the fusion 
temperature T,-. 

As melting proceeds, a moving interface denoted 
here by S(x’, t) is formed. Due to the existence of this 
moving interface, the solid and liquid domains are 
irregular and time dependent. To avoid this difficulty, 
a curvilinear system of coordinates is used to trans- 
form the physical domain into a rectangular region 
for the computations. The transformations 

transform the two irregular regions into two rec- 
tangles 

and 

O<q’ 6 I. O<?IZ< 1 (4) 

respectively. Using the two-dimensional Darcy-Bous- 
sinesq approximation, neglecting the volume change 
during the phase change process, and using a stream 
function fo~ulation, the dimensionless momentL]m. 
energy and interface energy balance equations may be 
written in the curvilinear coordinate system as follows. 

In the water region 
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1 
21’ = -q;, -. 

‘J (7) 

The equation governing the heat conduction in the 
ice region takes the same form as the equations above 
except that T’ is replaced by T’, < by q, ii, by glkvf 
and the coordinate parameters are evaluated using the 
transform relations. 

A consideration of the energy balance at the inter- 
face provides the following equation : 

The non-linear variation of density in the water 
layer is given by [IS] 

p = &[I -nlT-T,Iq]. (9) 

The boundary conditions for the dimensionless 
stream function cp and dimensionless temperatures T’ 
and 7”’ are 

and 

T’ = 1,cp =O, at [‘= 0 

T’=cp=O, at <* = 1 

Z+l;l=~=0, at <‘=O,l (10) 

F =O. at $ = 0 

T’= -1, at y1?= 1 

r!:=O, at q’=O,l. (11) 

Other parameters are defined in the Nomenclature. 
For a fixed choice of fluid properties, the parameters 
a and Ste’ are interrelated. In fact, they both remain 
functions of the temperature at the lower surface Th. 

The parameter /$, although expressed as the ratio of 
two temperature differences, is in fact the thickness of 
the upper stable layer divided by the total thickness 
of the melt, this being the consequence of the linear 

conduction profile established prior to the onset of 
convection. Thus a value of p = 0.5 will fix the value 
of Ste’ at 0.1674 and implies that the thickness of the 
upper stable layer occupies 50% of the melt region. 
Ste” represents the influence of the steadily maintained 
temperature at the upper surface. For example, an 
imposed temperature of -4°C at the upper surface 
will give a Ste” = 0.3068 while a temperature of - 8°C 
will yield a value twice as large or St? = 0.6136. The 
definition of the Rayleigh number Z&J is based on the 
height of the cavity and the temperature difference 
across the melt. A modified Rayleigh number Ra” 

based on the thickness of the lower unstable layer and 
the temperature difference & - T,,, across it will be 
defined and used later. 

It should be noted that this study is based on the 
Darcy model where the geometric structure of the 
porous matrix is globally represented by the per- 
meability K (the effect of which is incorporated into 
the Rayleigh number Ra). During the melting process, 
the porosity d, of the medium also influences the pro- 
gression of the solid-liquid interface, as described by 
the energy balance, equation (8), where the Stefan 
number is defined as the ratio between the sensible 
heat and the effective latent heat of fusion 
(St = C,,AT/$AI1,). Changing the geometric matrix of 
the porous structure thus amounts to changing Ra or 
St. 

For definiteness, the present study considers the 
phase change process of a specific fluid (water) in a 
given porous medium. Attention is then focused on 
the evolution of the various governing parameters as 
the temperatures of the bounding surfaces (T,,, r,,) 
and the dimensions of the porous layer (L, H) are 
changed. 

SOLUTION METHOD 

In order to initiate the numerical simulation, a very 
thin layer of melt with a constant thickness So was 
assumed to be present. This initial condition is 
obtained from the Stefan solution in the melt and a 
linear temperature distribution in the ice region. Tests 
revealed that the influence of So could be neglected as 
S, was sufficiently small. (Typically, S, = 0.05 was 
used in this study.) 

A finite-difference method based on a control vol- 
ume formulation was used to obtain the numerical 
solutions. The discretized equations were derived by 
using a power law interpolation scheme for the spatial 
discretization and a standard forward difference 
approximation for the time derivative. The use of a 
non-orthogonal coordinate transformation results in 
the appearance of cross derivative terms which were 
treated in a special manner to deal with instabilities 
1161, as described in the Appendix. 

At each time step, the interface position S was 
determined from the energy balance at the interface. 
The stream function 50, temperature T’ and T” were 
then simultaneousIy solved using an AD1 technique. 



The convergence criterion used was that Table 1. Definition of investigated problems 

max I@‘+ ’ -@.I _~_!L____” < E 
max I@f;,l 

(12) 

where @ is either T, S or cp, superscript k is the kth 
iterative step and e (1 Om “) is the typical tolerance. The 
position of the interface S was then recalculated using 
the new values of cp and T, this procedure being 
repeated until converged solutions were obtained. 
Usually, 3-10 iterations were needed at each time step 

except at some critical points where the convection 
pattern changed rapidly and more iterations were 

necessary. In the present study, a 51 by 31 uniform 
computational grid for each domain was used with a 
dimensionless time step of about 1 O- ‘. It was testified 
that the difference between the solution with larger 
grid number and the present solution is less than 0.5% 
in the scope of the present study. 

Experiment /j SW’ 

I 0.2 0.4184 
2 0.2 0.4184 
3 0.2 0.4184 
4 0.2 0.4184 
5 0.2 0.4184 
6 0.4 0.2092 
7 0.5 0.1674 
8 0.5 0.1674 
9 0.5 0.1674 

IO 0.5 0.1674 
II 0.5 0.1674 

Ste’ XL RCI 

0.306825 1 478 
0.306825 I 300 
0.306825 I 200 
0.306825 I 120 
0.61370 I 47x 
0.306825 I 47x 
0.306825 I 900 
0.306825 1 700 
0.306825 I.1 700 
0.306825 0.X 700 
0.306825 I 478 

The incorporation of the conductive heat transfer 
in the ice region results in a final steady state solution 
being attained, in contrast to the classical Stefan prob- 

lem where the phase change process continues until 
the solid body is completely melted. The criterion 
whether steady solutions have been attained is that 
the difference between the two Nusselt numbers, 
defined at the top of the ice layer and at the bottom 
of the cavity, must be less than some predetermined 
tolcrancc, typically I %. However, as will be discussed 

later, this criterion should be applied with care. 

and the temperature difference across the potentially 
unstable layer. Ra‘ is such a parameter in this study, 

while the symbol Ra has been reserved (as mentioned 
earlier) to denote the Rayleigh number based on the 
total thickness of the porous layer. 

Table 2 summarizes, for each experiment, the criti- 
cal values of the relevant parameters at the onset of 
convection. 

RESULTS AND DISCUSSION 

It is instructive to compare the results tabulated in 

Table 2 for experiments l-4. Referring to Table 1. 
the overall Rayleigh number Ra for this series of 
experiments were respectively 478, 300, 200, and 120 
with a constant value for fi of 0.2. As expected, 
increasing the Rayleigh number results in convection 
being initiated at an earlier time (lower t,) with a 
thinner (dimensionless) melt layer (S,) at the critical 

point. 
It has been observed experimentally [2] and pre- 

dicted analytically [ 171 that the melt remains motion- 
less at the early stage of melting until an effective 
Rayleigh number exceeds some critical value. The 
initial appearance of convective activity has been gen- 
erally observed to be of cellular form. The primary 

characteristics of this problem are the onset of con- 
vection. the convective pattern in the melt, the pos- 
ition of the interface and the heat transfer rates at 
the upper and lower boundaries. This study therefore 
concentrates on these phenomena. The influence of 
the Rayleigh number Ra, the temperature ratio 1, 
the Stefan number of the liquid phase Ste’ (which is 
dependent on the temperature of the lower boundary 

T,,), the Stefan number Ste’ (dependent on the upper 
boundary temperature r,) and the geometry ratio XL 
on the system will be discussed and illustrated. In the 
following, it is implied that when the influence of a 
parameter is being examined, the other parameters 

are supposed constant. 

It must be noted however, that in this discussion an 
increase in the Rayleigh number (due to the manner 
in which it is defined) implies a larger cavity size, other 
parameters remaining fixed. A simple calculation indi- 
cates that the actual dimensional critical thickness of 

the melt layer &es increase with increasing Rayleigh 
number, the rate of increase being marked at the lower 
Rayleigh numbers and tapering off at the higher Ra. 

One would expect therefore, that at very high Rayleigh 
numbers, the thickness of the melt at the onset of 

The numerical experiments performed within the 
scope of this study are summarized in Table 1. 

Onset qf’convection 
The primary parameter influencing the natural con- 

vection in a fluid layer heated from below is the Ray- 
leigh number which is usually based on the thickness 

Table 2. Critical values at the onset of convection 
__~~ 

Cell 
Experiment SC t, R@ number u 

~__.______ 

I 0.2000 0.0628 50.10 6 0.8334 
2 0.3000 0.1563 47.17 4 0.8333 
3 0.4426 0.4188 46.40 2 1.1297 
4 0.5648 2.8000 35.56 2 0.8853 
5 0.1930 0.0700 48.36 6 0.8635 
6 0.3659 0.7500 39.84 4 0.6832 
7 0.3127 0.7800 42.32 6 0.5330 
8 0.3502 2.1250 32.96 4 0.7139 
9 0.3486 1.8125 32.81 4 0.7172 

10 0.3534 2.8125 33.26 4 0.7074 
11 finf 0 

____. ~~_._~ 
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convection, would be virtually independent of the 
Rayleigh number. This same behaviour is exhibited in 
the series of experiments 7, 8 and 11 which have a B 
value of 0.5. (Note that in experiment 11, the com- 
bination of p and Ra was such that only the pure 
conduction mode was realised.) It is also reasonable 
to speculate that, as the cavity size increases, the 
influence of the side walls on the critical point is being 
reduced due to their physical distance from the bulk 
of the fluid. 

If now, the critical Rayleigh number Raz is com- 
puted for the unstable portion of the melt, it appears 
that this value increases as Ra is increased. This inter- 
esting behaviour is probably due to the tact that keep- 
ing p, Ste’ and Ste” fixed while increasing Ra amounts 
to increasing the height H of the cavity as mentioned 
earlier. Consequently, the loss through the ice layer 
would be impeded with a resultant increase in the 
melting rate. Any small disturbance (although sup- 
posedly initially amplified exponentially according to 
linear stability theory) would take a finite time to 
manifest itself as an observable phenomenon during 
which time the interface has continued to move due 
to melting. The critical Rayleigh number Ra’, would 
thus appear to have increased due to this transient 
effect, 

We now direct our attention to the influence of p 
on the onset of convection. To this end, it is useful 
to examine the results of experiments 1, 6 and 11 
tabulated in Table 2, which have fi values of 0.2, 0.4 
and 0.5, respectively. These results indicate that as p 
increases, t, and S, also increase, all other quantities 
being constant. (It should be noted here that changing 
/I while keeping other parameters fixed corresponds 
to changing both T,, and H). For /I = 0.5, convection 
is absent so that the final steady state is in the pure 
conduction regime. The bottom temperature is then 
8’C with an overall Rayleigh number of 478 and an 
effective Rayleigh number Ru” for the unstable layer 
of 22.8. This value is not sufficiently large to initiate 
convection and therefore the only mode of heat trans- 
fer is conduction. Experiments 1 and 6 although per- 
formed at the same overall Rayleigh number Ra have 
descending values of the critical effective Rayleigh 
number Ra: based on the unstable layer. The upper 
stable layer or ‘inversion’ has a ‘softening’ effect com- 
pared to the ‘rigid’ upper boundary condition as dem- 
onstrated by Oguro and Kondo [18] on the basis of a 
linear stability analysis. 

The results of experiments 1 and 5 indicate that a 
higher Sfe” (lower T,) reduces the melting rate as well 
as the value of the effective critical Rayleigh number 
Raz. Comparing the two values of S,, it appears that 
the influence of Ste” on the onset of convection is not 
very strong. One explanation may be the fact that 
in these experiments the melt is relatively very thin 
compared to the ice region. It may be expected that 
the influence of the parameter Ste” on the onset of 
convection would be more pronounced for the cases 
where convection sets in with a larger value of S,. 

The influence of the lateral boundary on the onset 
ofconvection may be seen in the results ofexperiments 
8, 9 and 10 where XL = 1, 1.1 and 0.8, respectively. 
From these results shown in Table 2, and Figs. 68, 
it appears that convection is developing into a sym- 
metric, nearly square form, but narrower cells arise at 
higher critical effective Rayleigh number, in agree- 
ment with the fact that the lateral boundary has a 
stabilizing effect, as mentioned by Beck [19]. 

In obtaining the results presented here. it was veri- 
fied that any small disturbance imposed on the system 
would be attenuated and die away without the incep- 
tion of convection, provided that the effective Ray- 
leigh number was subcritical. However, if the initial 
thickness of the melt So was not small enough, con- 
vection would be initiated with a cell pattern that was 
strictly dependent on the form of the initial dis- 
turbance. 

Convection,form 
The streamlines and isotherms from some of the 

numerical experiments are illustrated in Figs. l-8. It 
can be seen that in some of them, the same celf or 
wave number is preserved from the inception of con- 
vection to the final steady state, while in other cases, 
evolution of wave number with time is evident. For 
convenience, this effect will be referred to as ‘con- 
vection form transition’. 

The time evolution of the streamlines and isotherms 
for experiments I,2 and 3, where Ra = 478, 300 and 
200, respectively, are presented in Figs. 1-3 which 
indicate the influence of Ra on the convection form. 
For Ra = 478 (Fig. I), convection is initiated with 
six cells, the cells becoming narrower as the melting 
proceeds. Subsequently, some of them shrink while 
others grow. Finally, the six cells break down into an 
irregular pattern of four cells which, however, do not 
persist for very long but are quickly bypassed to arrive 
at a two-cell configuration. The two-cell form then 
persists for the rest of the melting process with a steady 
state being attained at S = 0.8907. For Ra = 300 (Fig. 
2), convection is initiated with a pattern of four cells 
which persist for a long time and appear to approach 
a sort of ‘quasi’ steady state. However, convection 
form transition occurs albeit slowly with a slight freez- 
ing in the areas of descending water flow during which 
a two-cell pattern gradually replaces the four-cell 
form. The two-cell form remains for the rest of the 
melting process with a steady state being obtained 
with S = 0.8739. Finally, at the lowest Rayleigh num- 
ber Ra = 200 (Fig. 3), convection is initiated with two 
cells, and there is no convection form transition during 
the whole melting process, its steady state being 
approached with S = 0.8284. 

In Fig. 5, where p = 0.4, a four-cell form was 
initiated and persisted for a long time in a quasi-steady 
state, subsequently followed by the same freezing 
phenomenon in areas of descending liquid. A two-cell 
convection form was finally established. Comparison 
with Fig. 1 indicates that a higher /? slows down the 
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(8) 

(9) 

FIG. I. Time evolution of streamlines and isotherms of Exp. 1 for f = (I ) 0.0772 ; (2) 0.2647 ; (3) 0.3647 ; 
(4) 0.4047; (5) 0.4077; (6) 0.4107; (7) 0.4157; (8) 0.4357; (9) 0.6357. 



Melting of ice in a porous medium heated from beiow 

2) 

(3) 

FIG. 2. Time evolution of streamlines and isotherms of Exp. 2 for f = (I) 0.2000 ; (2) 0.3000 ; (3) I .6675 ; 
(4) 2.0675; (5) 2.7725; (6) 3.9725. 

melting rate and retards the convection transition 
effect. Another interesting feature which may be noted 
in these two figures is that the convection penetrates 
into the upper statically stable water layer even at 
inception, when the thickness of the static stable layer 

I I 

(1) 

(2) 

(3) 

Fro. 3. Time evolution of streamlines and isotherms of Exp. 
3 for f = (I) 0.5000 ; (2) 0.9000; (3) I .500. 

(6) 

is l/S and 2/5 of the total melt thickness in Figs. 1 and 
5, respectively. 

The influence of St& on the cell pattern can be seen 
in Figs. 1 and 4. Figure 4 presents the convective 
history of experiment 5 in which all relevant par- 
ameters are the same as in experiment 1 except for 
Ste’. The two convection forms are very similar, the 
only difference being a slight time lag at the early stage 
of convection. At this time, the melt is much thinner 
than the ice region so that the influence of the upper 
temperature on the water region would be small. The 
convection patterns evolve in different ways as further 
melting proceeds with a demonstrated dependence on 
the SW parameter. For Ste” = 0.3068, the convection 
form transition occurs earlier, quickly passing 
through an irregular four-cell pattern and terminating 
with a two-cell pattern. For Ste” = 0.61036. the initial 
form persists during a long quasi-steady period. The 
convection form transition happens much later with 
the attendant refreezing phenomenon mentioned earl- 
ier. The six-cell form is transformed into a four-cell 
pattern and no further transition is observed after- 
wards. Clearly, the Ste” parameter has an increasing 
effect on the convection pattern as further melting 
develops. 

It is reasonable to expect that more than one con- 
vection form transition may exist if the convective 
activity in the water layer was enhanced, for example, 
by increasing Ru, or decreasing p or De’, which would 
result in more convection cells being initiated at the 
onset with smaller values for S,. 

The cause and the ‘preferred’ wave number of the 



(6) 

FIG. 4. Time evolution of streamlines and isotherms of Exp. 5 for t = (1) 0.1284; (2) 0.8399; (3) 0.8599: 
(4) 0.8999; (5) 0.9499; (6) 1.3499. 

new convection pattern after the convection form 

transition, are interesting questions. It was predicted 
by Clever and Busse [20], and also by Strauss [21] that 
a secondary stability problem exists after the onset of 

convection in the BCnard problem. They pointed out 
that the two-dimensional convection solutions are 
unstable when the (Ra”, a) point lies outside their 
stability envelope. The convection form transition 

observed in this study may be the result of unstable 
convection forms being encountered during the melt- 
ing process. As the fluid layer becomes thicker, the 

convection cells become narrower so that at some 
point it is possible that a certain unstable bandwidth 
which is very sensitive to this convection form, is 

encountered. It was verified that the point (Ra‘, a) 
where convection form transition began to appear was 

out of Strauss’s stability balloon. 
As mentioned earlier, the initial convection form 

appeared to be strictly dependent on the initial melt 
thickness S, and the initial disturbance if S, is not 
very small. In order to verify if the final steady solu- 
tions were still dependent on these initial conditions, 
some further tests were performed for experiment 8. 
One such test was to start the simulation with an 
initial melt of S, = 0.35 and a disturbance which 
could initiate a three-cell convection pattern. It was 
observed that convection was initiated with a three- 
cell pattern which was later replaced by a two-cell 
form and the steady solution was obtained as before. 
Another test was the simulation of freezing from 
above. A thin layer of ice and pure conduction in the 

water layer were used as the initial conditions. A two- 
cell pattern was initiated, which was subsequently 
replaced by a four-cell pattern as the freezing 
continued, the steady solution obtained being ident- 
ical to the previous case. Therefore, it can be con- 
cluded that the final steady solutions (the interface 
position, the convection form and the heat transfer 
rate) were independent of the initial conditions. 

Heut transfer rate und interfhce position 
The lower and upper Nusselt numbers are defined 

as 

and 

NM” = Ste’/Ste’& 
s 

XL 
r;+l-S)l,>_ , dq’ (14) 

0 

respectively. 
Figures 9-12 indicate the variation of the average 

interface position and Nusselt numbers vs time for 
several experiments. Some jumps may be observed 
during the melting process, the earliest one cor- 
responding to the point of initiation of convection, 
while others (if they exist) to the convection form 
transition. These periods are accompanied by a sharp 
increase in both the interface movement and in the 
heat transfer rates. It appears that the convection form 
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~clol 80 00 

BEI 
(2) 

I I 

(3) 

I 

I I 

(7) 

(8) 

(9) 

FIG. 5. Time evolution of streamlines and isotherms of Exp. 6 for t = (1) 0.9390 ; (2) 3.3339 ; (3) 3.4390 ; 
(4) 3.5390; (5) 3.6040; (6) 3.6340; (7) 3.6640; (8) 3.8640; (9) 5.3640. 

(4) 

(5) 

(6) 
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(1) 

(2) 

(3) 

id 
(2) 

1 

(3) 

FIG. 6. Time evolution of streamlines and isotherms of Exp. 
8 fort = (1) 0.1000; (2) 3.2815; (3) 5.2815. 

FIG. 8. Time evolution of streamlines and isotherms of Exp. 
IO for t = (I) 2.9330; (2) 3.0830; (3) 4.5430. 

transition to a new cell pattern occurs in order to 
enhance the melting process. 

The influence of b, SW’, XL on the heat transfer 
rate and interface position can be seen in Figs. IO- 

12, respectively. Higher /I, Ste', and lower XL have 

stabilizing effects, they reduce the heat transfer rates, 
slow down the interface movement, postpone or even 
eliminate the convection form transition. 

Figures 9 and 11 indicate two types of convection 

form transition. One occurs at a time when the two 
Nusselt numbers are very different, the other one at a 
time long after an apparent steady state is approached. 
It was observed that slight refreezing in certain regions 
of the water layer occurs before and during a con- 
vection form transition of the second type but is 
absent during the evolution of the first type (Figs. 2, 
4, 5, 10, especially Figs. 5 and 10). 

The convergence of the two Nusselt numbers can- 

not therefore be used as a unique criterion to deter- 
mine the approach to the final steady solution. Other 
aspects such as whether the cells have the same size 
and shape, and the position of the (Ra‘, a) point 
with respect to Strauss’s stability envelope, have to be 
considered simultaneously with the convergence of 
the two Nusselt numbers in order to ascertain if a true 
steady state has been reached. 

Finally, results at the steady state using only the 
pure conduction mode, and with convection are pre- 
sented in Table 3 to show the overall effects of con- 
vection on the interface position and the heat transfer 
rates. 

I I 

(1) 

(2) 

(3) 

I I 

I I 

I 

Fm CONCLUDING REMARKS 

The melting of ice heated from below in a rec- 
tangular cavity filled with a porous medium has been 
investigated numerically. In the melting process, con- 

FIG. 7. Time evolution of streamlines and isotherms of Exp 
9 for f = (1) 2.5830; (2) 3.0830; (3) 5.3580. 
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FIG. 9.1. Influence of Rayleigh number on heat transfer rate : (1) Ra = 478, Experiment 1; (2) Ra = 300, 
Experiment 2 ; (3) Ra = 200, Experiment 3. 

I , 

00 O.G7 
t I I , 

1.33 2.00 2.67 3.33 9.00 
TIME 

FIG. 9.2. Influence of Rayleigh number on interface position : (1) I&I = 478, Ex~~ment 1; (2) Ru = 300, 
Experiment 2; (3) Ra = 200, Experiment 3. 
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FIG. 10.1. Influence of p on heat transfer rate: (I) p = 0.2, Experiment 1 ; (2) /I = 0.4, Experiment 6 ; (3) 
p = 0.5, Experiment 1 I. 
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FIG. 10.2. Influence of fi on interface position : (1) j = 0.2, Experiment 1; (2) j = 0.4, Experiment 6 ; (3) 
/I = 0.5, Experiment 1 I. 



Melting of ice in a porous medium heated from below 401 

1 1 I , I 

0.32 0.64 0.96 1.29 1.60 
TIME 

, 8 1 / 1 

00 0.32 0.6V 0.96 1.28 1.60 
TIME 

Frc. 11.1. Influence of Ste” on heat transfer rate: (I) Ste’ = 0.3068; Experiment 1; (2) Ste” = 0.6136, 
Experiment 5. 

FIG. 11.2. Influence of Ste” on interface position: (1) Ste” = 0.3068; Experiment 1 ; (2) Ste” = 0.6136. 
Experiment 5. 

vection starts to play an important role as the melt 
thickness attained a certain value corresponding to 
the critical Rayleigh number for the onset of convec- 
tion. The newly formed convection cells appear to 
have a nearly square form. As melting continues, these 
cells become more slender, and suddenly break up 
sequentially. The transition period (i.e. duration of 
the breaking process) is quite short, but is followed 
by a very long (i.e. quasi-steady) period. The final 
steady state (which in fact exists when the upper 
boundary is maintained at a temperature below the 
melting point) is sometimes difficult to attain as it can 
be preceded by very long quasi-steady states. This 
phenomenon is reflected in the evolution of the heat 
transfer rate. The curve of Nusselt number vs time 
exhibits a jump each time a convection cell disappears. 
It is therefore reasonable to conclude that the new 

convection pattern is formed to augment the heat 
transfer, in agreement with the principle of maximum 
heat transfer proposed by Malkus. This change in the 
convection pattern may be interpreted with reference 
to the stability theory of Busse. As melting continues, 
the convection cells become narrower and narrower 
until a point is reached where they become unstable 
with respect to a certain kind of perturbation and 
cannot survive. This is in fact the point at which 
increasing wave number crosses threshold to fail out- 
side Busse’s stability balloon. Moreover, during the 
transition from one flow pattern to another, the 
inverse phenomenon of refreezing was sometimes 
observed together with a decrease in the heat transfer 
rate. 

A final remark should be made concerning the spec- 
ific melting of ice. Here the melt is comprised of a 
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FIG. 12.1. Influence of XL on heat transfer rate : (I) XL = 1.0, Experiment 8; (2) XL = 1.1, Experiment 
9; (3) XL = 0.8, Experiment 10. 
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Frci. 12.2. Influence of XL on interface position : (1) XL = 1.0, Experiment 8 ; (2) XL = 1.1, Experiment. 
9; (3) XL = 0.8, Experiment 10. 
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Table 3. Steady solution results using conduction mode only and with 
convection 

Experiment Scond SC,,, Nu,,,~ Nu,,,, s,,, s,,,,, 

1 0.5769 0.8449 1.7333 5.5100 0.6886 0.8907 
2 0.5769 0.8184 1.7333 4.4370 0.7273 0.8739 
3 0.5169 0.7673 1.7333 3.4830 0.6887 0.8284 
5 0.4054 0.7220 2.4667 5.3740 0.6794 0.7465 
6 0.4054 0.5897 2.4667 3.680 0.5225 0.6471 
8 0.3530 0.4650 2.8329 3.4170 0.4603 0.4678 
9 0.3530 0.4739 2.8329 3.486 0.4647 0.4778 

10 0.3530 0.4177 2.8329 3.184 0.4164 0.4191 
11 0.3530 0.3530 2.8329 2.8329 0.3530 0.3530 

stable layer of cold water (below 4°C) lying between 
the ice surface and an unstable layer of warmer water 
(above 4°C). As a consequence, if the lower surface is 

maintained at a temperature below 4”C, no con- 
vection would occur. The presence of a stable layer 

adjacent to the ice surface also greatly reduces the 
heat transfer, and thereby the melting rate, when the 
heated surface is maintained at temperatures below 
10°C. Furthermore, the cold stable water at the ice 
surface also attenuates the effect of the impinging flow 
rising from the unstable layer. Thus the water-ice 
interface, when heated from below, is less wavy than 
when heated from above. 
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APPENDIX 

The use of a non-orthogonal coordinate transformation 
results in the appearance of cross-derivative terms which 
have to be treated in a special manner so as to deal with 
instabilities. Denoting the relevant contravariant com- 
ponents of the flux as 

J”(a) = G” (ri,O-rg) (no summation here) (Al) 

where @ can be either T or cp, r equals I as @ represents T’ 
and cp, and r equals R as @ represents T”. The diffusion- 
convection equation may then be written as 

&JO)+ $(J”(Q)+J”(@)) = 0. (A2) 
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Integrating on the control volume as shown in Fig. Al yields 

+[J*‘(~)+J”(~)]A.~I: = 0 (A3) 

where P represents the current point under discussion, E, W, 
N, S the neighbours of P to the east, west, north and south. 
respectively, and e, w, n, s are the mid points of the control 
volume interface. 

The values of J” are approximated using the power law 
scheme. For example, the value of the non-cross term J’ ’ at 
point e is approximated using the power law scheme directly 

Jw 

t 
t2 

I E’ 
FIG. Al. Sketch of control volume. 

(A4) 

where 

h, =max{O,-6,]+max{O,(l-O.l(~~]]~~. (A5) 

Similarly, the term J”(Q) at point e may also be represented 
as 

J”(Q)lc = C’*[(~z+~,)Q,+,~~.,~i.~-~~Q,+, 2_,, , zllc 

(A6) 

where 

h,=max{O.-li?]+max{O.(l-O.li+lJ}. (A7) 

Q ,+,,2,,_,.2 andQ,+,..2,,+,.? areinterpolatedas 

Q 
i(Q,.,+Q,, ,., ,) if G’* ~0 
l(Q),+,,,+Q,,,_,) if G” > 0 (A8) 

Q 
i(Q,.,+, +Q,+ ,.,) if G” < 0 

,+ ,iz.,+ 1’2 = 
I(Q,,+Q,,+t,,+l) if G’* > 0’ (A9) 

These interpolations were obtained from geometric argu- 
ments. Since 

G’* = _ ;g,: = ~_ ;e, .e, (AlO) 

G ” < 0 means that the angle between the directions e , and 
e, is smaller than 7c/2 and therefore, the position at ‘(i+ l/2, 
j-1/2)’ is closer to the points P and (i+ 1, j- 1) than to the 
points S and E. The inverse conclusion may also be made 
for a positive value of G”. One may show that, the inter- 
polations in equations (A8) and (A9) further ensure that the 
coefficients of the discretized equations 

qQ)p = c an,Qn, (All) 

usually satisfy the rules of discretization in order to avotd 
the instability caused by the cross terms under the non- 
orthogonal curvilinear coordinate. 

FUSION DE LA GLACE DANS UN MILIEU POREUX CHAUFFE PAR LE BAS 

R&sum&-Un etude numerique est faite sur la fusion de la glace chauffee par le bas dans une cavite remplie 
par un milieu poreux, en considerant les equations sous la forme dependant du temps. On introduit dans 
la simulation numtrique la convection naturelle dans la phase liquide, la conduction dans la glace sous- 
refroidie et l’effet de l’inversion de densite de l’eau. Les caracteristiques principales du mecanisme de fusion, 
c’est-a-dire l’apparition de la convection, la configuration de I’ecoulement dans le bain, les flux thermiques 
et la position de l’interface sont etudiees en fonction du nombre de Rayleigh, du nombre de Stefan, du 
rapport de forme. Les principaux resultats montrent que la configuration cellulaire initiale formee juste 
apres I’apparition de la convection passe a travers plusieurs formes intermediaires depuis la transition 
jusqu’a un itat final. Chaque changement dans la configuration de convection est accompagne d’un 
accroissement brutal du transfert thermique et dune vitesse de deplacement de l’interface solide-liquide. 
Un maximum local de la densite de flux thermique apparait britvement aprts l’ttablissement dune nouvelle 

configuration de convection. 
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DAS SCHMELZEN VON EIS IN EINEM VON UNTEN BEHEIZTEN PORdSEN MEDIUM 

Zusnmmenfassung-Das Schmelzen von Eis in einem von unten beheizten Hohlraum, der ein porijses 
Medium enthalt, wird unter Verwendung der zeitabhiingigen Erhaltungsgleichungen numerisch untersucht. 
Die numerische Liisung enth%lt Einfliisse der natiirlichen Konvektion in der fliissigen Phase, der 
Wlrmeleitung im Gebiet unterkiihhen Eises sowie den Einflug der Dichteinversion bei Wasser. Die 
Haupteigenschaften des Schmelzvorgangs, ngmlich das Einsetzen von Konvektion, die Strdmungsform 
in der Schmelze, der Wlrmeiibergang und die Position der Schmelzfront werden in Abhangigkeit von der 
Rayleigh-Zahl, der Stefan-Zahl, vom Seitenverhaltnis des Hohlraums sowie von der Dichteinversion des 
Wassers untersucht. Die wichtigsten Ergebnisse zeigen, dal3 die anf%nglich vorhandene zellfijrmige Struktur 
unmittelbar nach Einsetzen der Konvektion sich verlndert und nach einigen Zwischenstadien schlieglich 
zu einem stationaren Endzustand hin fiihrt. Jede Anderung der Form der Konvektion ist mit einer 
pliitzlichen Zunahme des Warmetibergangs und der Wanderungsgeschwindigkeit der Fest-Fliissig-Phasen- 
grenze verbunden. Kurz nach Erreichen einer neuen Konvektionsform ergibt sich ein drtliches Maximum 

des Warmeiibergangs. 

TAIIHHE JIbj&4 B HAJ-PEBAEMO~ CHkI3Y J-IOPACTOR CPEflE 

M HcnonB3oBaHHeM Hecra~oHapHbrx ypanHeHHH BHCnemio Hcuxenyercn ra5mHe Harpesae- 
hforo crix3y nbna B nonocrH,3anomiemioil nop~crofi cpenoil. %icneHHoe MonemfpoBaHHe mcmo~am 

ecTecmeHHyt0 BOHBeBmiro B XBHKOH @t3~3, Tem7oHpOBOJHiocTb B HeAOqXTOfi 06nacrH Jm~a, a Tazne 
3+&rT lIHBepCEHlIJlOTHoCTE-BO.l0l.&HOBHhIexa~epHCTHKliIIpOlKCCZiTilWiX,aEMeHHo,B03HEK- 

HOBeHHe KOHBeKHHH,cTpyfiypa UOTOKa B paCIUIaBe, EHTeHCEBHOCTb TeWIOlIepeHOCa H ~IlOJIOXCekIHe 

MeX@3HOzi~HliUbI, ECCJleAyloTCll Ha oCIiOBe 'OiCeJI P3JIea El CTe&Ha,aTaXX(e COOTHOUIeHHSCTO~H 

nO~~AAAABe~MOTHOCTHBOJlbl.nOnyPeHwIepe3y~TaT~CBRqeTeJIb~yIoTOTOM,¶TOHaSaTIb- 

tran crpyrrypa awer,o6pa30eamian aen0cpemzmsuio nome n03mmoBemx roxee~H,npa nepexofle 

K crawio~ap~obfy co~~omimo npoxomfr ~ec~onbtco npohlemyromsx ~m0B. Kazcnoe H3MeHeHHe 
peXHhfa LOHBeKHHA %XI~BOXCHaeXB pe3KHM yBeHB’leHBeM HHTeHCiiBHOCTB TellJIOIle~HoCil H CHOpOcTH 
CMel4eHBX l-pWiEltbI pa3AeJIa TBepJWe TeJIoSiCHJW3cTb.~OICilJIbH~ MaICEMaJlbHOe 3HiVIeHHe EHTelICAB- 


